一、安装pytorch
1、官网地址https://pytorch.org/
2、根据自己的需求选择
说明:
PyTorch Build
就是选择下载稳定版(Stable
)还是预览版(Preview
),这里一般选择稳定版(Stable
)YourOS
不多说,选择自己对应的操作系统类型Package
:下载方式,教程提供的是Conda
方式,这里我们使用Pip
方式Language
:即选择你的python
版本(Anaconda
下载后自带python
,可以在cmd
输入python --version
查看自己的python
版本)CUDA
:如果要下载gpu
版本,那么就选择你对应的cuda
的版本(不知道自己cuda
版本的请戳:https://www.jianshu.com/p/d3b9419a0f89);如果下载cpu
版本,那么选择 NoneRun this Command
:当你选择好版本后,会自动再次生成下载安装PyTorch
的命令
验证:
import torch
#查看版本
print(torch.__version__)
#查看gpu是否可用
print(torch.cuda.is_available())
#返回设备gpu个数
print(torch.cuda.device_count())
二、下载YOLOv5 github项目
git clone https://github.com/ultralytics/yolov5
若出现下图所示情况:
如果可以正常访问Github
,则为服务器的SSL
证书没有经过第三方机构的签署导致的,执行以下命令解除ssl
验证后,再次clone
即可:
git config --global http.sslVerify "false"
执行 detect.py
,项目会自动从链接下载yolov5s.pt
模型。
三、安装所需依赖(三选一)
- 手动根据报错信息通过
pip
安装(可能需要多次运行程序) - 根据报错信息到
Pypi
网站手动下载当前操作系统与Python
版本对应的whl
文件并pip install 文件名
安装 python -m pip install -r requirements.txt
一键自动安装(推荐)
四、下载Yolov5预训练模型
如需手动下载官方训练的其他模型,可以点击这里。
yolov5共有四种模型:yolov5s
、yolov5m
、yolov5l
、yolov5x
不同的预训练模型 ,效果和精度不一样,如下图:
其中yolov5s
目标检测速度最快,因为其网络参数最少,但相应的,检测效果相比是最差的;
而yolov5x
是检测效果最好的,参数最多,而时间上最慢;
具体使用可以根据实际需要,例如如果目标检测应用场景比较看重速度,就用yolov5s.pt
。
其中P5/P6模型的差异:(模型后面不带6的就是P5)
- YOLOv5-P5 models (same architecture as v4.0 release): 3 output layers P3, P4, P5 at strides 8, 16, 32, trained at
--img 640
python detect.py --weights yolov5s.pt # P5 models
yolov5m.pt
yolov5l.pt
yolov5x.pt
- YOLOv5-P6 models: 4 output layers P3, P4, P5, P6 at strides 8, 16, 32, 64 trained at
--img 1280
python detect.py --weights yolov5s6.pt # P6 models
yolov5m6.pt
yolov5l6.pt
yolov5x6.pt
Example usage:
# Command Line
python detect.py --weights yolov5m.pt --img 640 # P5 model at 640
python detect.py --weights yolov5m6.pt --img 640 # P6 model at 640
python detect.py --weights yolov5m6.pt --img 1280 # P6 model at 1280
# PyTorch Hub
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6') # P6 model
results = model(imgs, size=1280) # inference at 1280
模型在GPU 下的效率测试数据图:
五、测试使用YOLOv5
python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube video
'rtsp://example.com/media.mp4' # RTSP, RTMP,
最新版还支持了直接通过Youtube
的url
进行目标检测.
从硬盘里随便拉了一张图片和一段视频分别进行测试,结果如下:
其中,CPU
版本的YOLOv5
对于视频处理的速度明显远低于对图片的处理速度,且处理过的视频默认没有保留声音(据说声音可以直接用moviepy
模块添加,但本人为了方便,直接使用pr
软件做了添加)。
结果默认输出到了./runs/detect/
目录下:
六、主要函数代码解析
最后发现网上有大佬针对main
函数和detect
函数做了详细的中文注释解析,收藏一份以备不时之需:
检测参数以及main函数解析:
if __name__ == '__main__':
"""
weights:训练的权重
source:测试数据,可以是图片/视频路径,也可以是'0'(电脑自带摄像头),也可以是rtsp等视频流
output:网络预测之后的图片/视频的保存路径
img-size:网络输入图片大小
conf-thres:置信度阈值
iou-thres:做nms的iou阈值
device:设置设备
view-img:是否展示预测之后的图片/视频,默认False
save-txt:是否将预测的框坐标以txt文件形式保存,默认False
classes:设置只保留某一部分类别,形如0或者0 2 3
agnostic-nms:进行nms是否也去除不同类别之间的框,默认False
augment:推理的时候进行多尺度,翻转等操作(TTA)推理
update:如果为True,则对所有模型进行strip_optimizer操作,去除pt文件中的优化器等信息,默认为False
"""
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.65, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
# 去除pt文件中的优化器等信息
strip_optimizer(opt.weights)
else:
detect()
detect函数解析:
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer)
from utils.torch_utils import select_device, load_classifier, time_synchronized
def detect(save_img=False):
# 获取输出文件夹,输入源,权重,参数等参数
out, source, weights, view_img, save_txt, imgsz = \
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
# 获取设备
device = select_device(opt.device)
# 移除之前的输出文件夹
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# 如果设备为gpu,使用Float16
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
# 加载Float32模型,确保用户设定的输入图片分辨率能整除32(如不能则调整为能整除并返回)
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
# 设置Float16
if half:
model.half() # to FP16
# Second-stage classifier
# 设置第二次分类,默认不使用
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Set Dataloader
# 通过不同的输入源来设置不同的数据加载方式
vid_path, vid_writer = None, None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
# 如果检测视频的时候想显示出来,可以在这里加一行view_img = True
view_img = True
dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
# 获取类别名字
names = model.module.names if hasattr(model, 'module') else model.names
# 设置画框的颜色
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
# 进行一次前向推理,测试程序是否正常
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
"""
path 图片/视频路径
img 进行resize+pad之后的图片
img0 原size图片
cap 当读取图片时为None,读取视频时为视频源
"""
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
# 图片也设置为Float16
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
# 没有batch_size的话则在最前面添加一个轴
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
# print("preprocess_image:", t1 - t0)
# t1 = time.time()
"""
前向传播 返回pred的shape是(1, num_boxes, 5+num_class)
h,w为传入网络图片的长和宽,注意dataset在检测时使用了矩形推理,所以这里h不一定等于w
num_boxes = h/32 * w/32 + h/16 * w/16 + h/8 * w/8
pred[..., 0:4]为预测框坐标
预测框坐标为xywh(中心点+宽长)格式
pred[..., 4]为objectness置信度
pred[..., 5:-1]为分类结果
"""
pred = model(img, augment=opt.augment)[0]
t1_ = time_synchronized()
print('inference:', t1_ - t1)
# Apply NMS
# 进行NMS
"""
pred:前向传播的输出
conf_thres:置信度阈值
iou_thres:iou阈值
classes:是否只保留特定的类别
agnostic:进行nms是否也去除不同类别之间的框
经过nms之后,预测框格式:xywh-->xyxy(左上角右下角)
pred是一个列表list[torch.tensor],长度为batch_size
每一个torch.tensor的shape为(num_boxes, 6),内容为box+conf+cls
"""
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# t2 = time.time()
# Apply Classifier
# 添加二次分类,默认不使用
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
# 对每一张图片作处理
for i, det in enumerate(pred): # detections per image
# 如果输入源是webcam,则batch_size不为1,取出dataset中的一张图片
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
# 设置保存图片/视频的路径
save_path = str(Path(out) / Path(p).name)
# 设置保存框坐标txt文件的路径
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
# 设置打印信息(图片长宽)
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
# 调整预测框的坐标:基于resize+pad的图片的坐标-->基于原size图片的坐标
# 此时坐标格式为xyxy
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
# 打印检测到的类别数量
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results
# 保存预测结果
for *xyxy, conf, cls in det:
if save_txt: # Write to file
# 将xyxy(左上角+右下角)格式转为xywh(中心点+宽长)格式,并除上w,h做归一化,转化为列表再保存
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
# 在原图上画框
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
# Print time (inference + NMS)
# 打印前向传播+nms时间
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
# 如果设置展示,则show图片/视频
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
# 设置保存图片/视频
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % Path(out))
# 打开保存图片和txt的路径(好像只适用于MacOS系统)
if platform == 'darwin' and not opt.update: # MacOS
os.system('open ' + save_path)
# 打印总时间
print('Done. (%.3fs)' % (time.time() - t0))
4.17更新
问题一:
Windows
环境下,安装好Pytorch
后如果import
时报如下错误,安装这个插件即可解决问题!
问题二:
UnicodeDecodeError: 'gbk' codec can't decode byte 0x98 in position 1130:illegal multibyte sequence...
解决方案:
删掉项目下的setup.cfg
以后,就能安装了。
问题三:
出现这个问题:
先升级pip工具包:
pip install --upgrade pip setuptools wheel -i https://pypi.tuna.tsinghua.edu.cn/simple
再重试安装:
pip install opencv-python
再重新批量安装依赖:
pip install --no-cache-dir -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
解决问题!
问题四:
Windows Server 2012 r2
服务器下import cv2
出现ImportError: DLL load failed
其实问题很简单,这是因为缺少与Window Media Service
相关的mfplat.dll
解决方案如下:
安装 Windows Server 2012 r2
的 桌面体验 功能 !
参考资料:
https://www.cnblogs.com/lvhuayan/p/14538106.html
https://howiexue.blog.csdn.net/article/details/118445766
https://howiexue.blog.csdn.net/article/details/118463534
https://www.cnblogs.com/20183544-wangzhengshuai/p/14814438.html
https://blog.csdn.net/sinat_28371057/article/details/120598220
https://blog.csdn.net/JulyLi2019/article/details/111666353
https://blog.csdn.net/Q1u1NG/article/details/108093525
https://www.aiuai.cn/aifarm1511.html
https://jingyan.baidu.com/article/c35dbcb0a8c48f8916fcbc32.html
https://github.com/ultralytics/yolov5/releases
https://segmentfault.com/q/1010000010372172/
https://blog.csdn.net/weixin_43168960/article/details/107841815
版权属于:soarli
本文链接:https://blog.soarli.top/archives/587.html
转载时须注明出处及本声明。